Parameterization of Bivariate Nonseparable Orthogonal Symmetric Scaling Functions with Short Support
نویسندگان
چکیده
Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M = 2I . First, we present the correlation of the scaling functions with dilation matrix M and 2I . Then by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling functions with dilation matrix M , we give a parameterization of a class of bivariate nonseparable orthogonal symmetric compactly supported scaling functions with dilation matrix M . Finally, a construction example of nonseparable orthogonal symmetric and compactly supported scaling functions is given.
منابع مشابه
Arbitrarily Smooth Orthogonal Nonseparable Wavelets in R
For each r ∈ N, we construct a family of bivariate orthogonal wavelets with compact support that are nonseparable and have vanishing moments of order r or less. The starting point of the construction is a scaling function that satisfies a dilation equation with special coefficients and a special dilation matrix M : the coefficients are aligned along two adjacent rows, and |det(M)| = 2. We prove...
متن کاملParameterization for Bivariate Nonseparable Wavelets
In this paper, we give a complete and simple parameterization for bivariate non-separable compactly supported orthonormal wavelets based on the commonly used uniform dilation matrix = 0 1 2 0 D Key-Words: Wavelets, Nonseparable, Bivariate, Parameterization
متن کاملConstruction of Multivariate Biorthogonal Wavelets by CBC Algorithm
In applications, it is well known that short support, high vanishing moments and reasonable smoothness are the three most important properties of a biorthogonal wavelet. Based on our previous work on analysis and construction of optimal fundamental refinable functions and optimal biorthogonal wavelets, in this paper, we shall discuss the mutual relations among these three properties. For exampl...
متن کاملConstruction of Biorthogonal Wavelets by CBC Algorithm
In applications, it is well known that short support, high vanishing moments and reasonable smoothness are the three most important properties of a biorthogonal wavelet. Based on our previous work on analysis and construction of optimal fundamental reenable functions and optimal biorthogonal wavelets, in this paper, we shall discuss the mutual relations among these three properties. For example...
متن کاملConstruction of Biorthogonal Wavelets by CBC
In applications, it is well known that short support, high vanishing moments and reasonable smoothness are the three most important properties of a biorthogonal wavelet. Based on our previous work on analysis and construction of optimal fundamental reenable functions and optimal biorthogonal wavelets, in this paper, we shall discuss the mutual relations among these three properties. For example...
متن کامل